(1) Operation at each point

Product is operation at each point. With respect to approximate fuction $\mathrm{F}(\mathrm{x})$ of hyperfunction $f(x)$ and approximate fuction $G(x)$ of hyperfunction $g(x)$, function $J(x)$ is calculated by formula(1).

$$
\begin{equation*}
J(x)=F(x) \cdot G(x) \tag{1}
\end{equation*}
$$

Hyperfunction $j(x)$ is defined by function $J(x)$ as is the approximate fnction. Components $\mathrm{j}_{\mathrm{h}}(\mathrm{x}), ~ \mathrm{j}_{\mathrm{d}}(\mathrm{x}), \mathrm{j}_{1}(\mathrm{x}), \mathrm{j}_{2}(\mathrm{x})$, ••• are calculated by formula (2) ~formula (4)

$$
\begin{align*}
& \mathrm{j}_{\mathrm{h}}(\mathrm{x})=\lim _{\rho \rightarrow 0} \lim _{\varepsilon \rightarrow 0} J(\mathrm{x}-\rho) \tag{2}\\
& \mathrm{j}_{\mathrm{d}}(\mathrm{x})=\lim _{\rho \rightarrow 0} \lim _{\varepsilon \rightarrow 0}\{J(\mathrm{x}+\rho)-J(\mathrm{x}-\rho)\} \tag{3}\\
& \mathrm{j}_{\mathrm{n}}(\mathrm{x})=\lim _{\rho \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \int_{\mathrm{x}-\rho}^{\mathrm{x}+\rho}(\mathrm{t}-\mathrm{x})^{\mathrm{n}-1} J(\mathrm{t}) \mathrm{dt} \\
& \quad(\mathrm{n}=1,2,3, \cdots \cdot) \tag{4}
\end{align*}
$$

$j(x)$ expressed by formula (5) separating components with comma "." and arraying components and wrapping in bractets, is defined as result of opperation.

$$
\begin{equation*}
\mathrm{j}(\mathrm{x})=\left\{\mathrm{j}_{\mathrm{h}}(\mathrm{x}), \mathrm{j}_{\mathrm{d}}(\mathrm{x}), \mathrm{j}_{1}(\mathrm{x}), \mathrm{j}_{2}(\mathrm{x}), \cdot \boldsymbol{\bullet}\right\} \tag{5}
\end{equation*}
$$

When formula(1) is substituted into formula(4), variable x is changed to variable t as formula(6).

$$
\begin{equation*}
J(t)=F(t) \cdot G(t) \tag{6}
\end{equation*}
$$

(2) Possibility of divergence

Both formula(2) and formula (3) converge, but sometimes formula(4) does not converge. Therefore product of 2 hyperfunctions $f(x)$ and $g(x)$ can not be always defined. For example, when approximate function $B_{1}(x)$ of formula(7) is substituted into approximate function $F(x)$ and $G(x)$ of
formula(1), formulla(8) is obtained.

$$
\begin{align*}
& \boldsymbol{B}_{1}(\mathrm{x})=\frac{1}{\varepsilon \sqrt{\pi}} \exp \left(-\left(\frac{\mathrm{x}}{\mathcal{E}}\right)^{2}\right) \tag{7}\\
& \mathrm{J}(\mathrm{x})=\left\{\boldsymbol{B}_{1}(\mathrm{x})\right\}^{2} \tag{8}
\end{align*}
$$

If first component $j_{1}(0)$ at point $x=0$ is calculated as formula (9), substituting function $\mathrm{J}(\mathrm{x})$ of formulla (8) into formula (4), $\mathrm{j}_{1}(0)$ diverges to $+\infty$.

$$
\begin{equation*}
\mathrm{j}_{1}(0)=\lim _{\rho \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \int_{-\rho}^{+\rho} \mathrm{J}(\mathrm{x}) \mathrm{dx}=+\infty \tag{9}
\end{equation*}
$$

(3) Expectation of convergence

When formula(4) is observed, if approximate function $G(t)$ is the form of formula (10) containing variable x, it is expected that formula (4) may converge.

$$
\begin{equation*}
G(t)=(t-x)^{k} \quad(k=0,1,2, \cdots \cdots) \tag{10}
\end{equation*}
$$

When formula(4) is transformed into formula(11) using function $G(t)$ of formula(10), $\mathrm{j}_{\mathrm{n}}(\mathrm{x})$ does converge.

$$
\begin{align*}
\mathrm{j}_{\mathrm{n}}(\mathrm{x}) & =\lim _{\rho \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \int_{\mathrm{x}-\rho}^{\mathrm{x}+\rho}(\mathrm{t}-\mathrm{x})^{\mathrm{n}-1} G(\mathrm{t}) \cdot \mathrm{F}(\mathrm{t}) \mathrm{dt} \\
& =\lim _{\rho \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \int_{\mathrm{x}-\rho}^{\mathrm{x}+\rho}(\mathrm{t}-\mathrm{x})^{\mathrm{n}-1}(\mathrm{t}-\mathrm{x})^{\mathrm{k}} \cdot \mathrm{~F}(\mathrm{t}) \mathrm{dt} \\
& =\lim _{\rho \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \int_{\mathrm{x}-\rho}^{\mathrm{x}+\rho}(\mathrm{t}-\mathrm{x})^{\mathrm{n}+\mathrm{k}-1} \cdot \mathrm{~F}(\mathrm{t}) \mathrm{dt} \\
& =\mathrm{f}_{\mathrm{n}+\mathrm{k}}(\mathrm{x}) \tag{11}
\end{align*}
$$

The role of variable t and variable x should be noted. Variable t performs the role of independent variable at first, and diminishes after integral calculation is completed. Variable x performs the role of constant at first, and performs the role of independent variable after integral calculation is completed.Although function
$G(t)$ of formula(10) containes variable t and variable x which are the same nature as formula(4), function $G(t)$ of right hand side of formula(6) contains only variable t which is the same nature as formula(4). If function $G(t)$ of right hand side of formula (6) is able to transformed and expressed using function $G(t)$ of formula(10), the product does converge.

(4) Taylor expansion

When differentiable function $\phi(x)$ is performed a taylor expansion like formula (12), function $\phi(x)$ is expressed in a form of linear combination of functions $G(t)$ of formula (10).

$$
\begin{align*}
\phi(\mathrm{t}) & =\phi(\mathrm{x})+\frac{\phi^{\prime}(\mathrm{x})}{1!}(\mathrm{t}-\mathrm{x})+\frac{\phi^{\prime \prime}(\mathrm{x})}{2!}(\mathrm{t}-\mathrm{x})^{2}+\cdots \\
& +\frac{\phi^{(\mathrm{k})}(\mathrm{x})}{\mathrm{k}!}(\mathrm{t}-\mathrm{x})^{\mathrm{k}}+\cdots \\
& =\sum_{\mathrm{k}=0}^{\infty} \frac{\phi^{(k)}(\mathrm{x})}{\mathrm{k}!}(\mathrm{t}-\mathrm{x})^{\mathrm{k}} \tag{12}
\end{align*}
$$

As for $k=0, \phi^{(0)}(t)=\phi(t), \quad 0!=1$ are hold. Assume that convergence radius of formula (12) is $+\infty$. Symbol Σ of formula(12) expresses summation, and formula(12) is a linear combination of function $G(t)$ of formula(10). If function $\phi(t)$ of formula(12) is substituted into approximate function $G(t)$ of formula(6), formula(13) is obtained.

$$
\begin{equation*}
J(t)=\phi(t) \cdot F(t) \tag{13}
\end{equation*}
$$

When function $J(t)$ of formula(13) is substituted into formula(4), formula(14) is obtained.

$$
\begin{equation*}
\mathrm{j}_{\mathrm{n}}(\mathrm{x})=\sum_{\mathrm{k}=0}^{\infty} \frac{\phi^{(\mathrm{k})}(\mathrm{x})}{\mathrm{k}!} \mathrm{f}_{\mathrm{n}+\mathrm{k}}(\mathrm{x}) \tag{14}
\end{equation*}
$$

When formula (12) and formula (14) are compared, $(t-x)^{k}$ of formula (12) and $f_{n+k}(x)$ of formula (14) are corresponding. Even if
$(t-x)^{k} \rightarrow+\infty$ when $(t-x)>1, k \rightarrow+\infty$, formula (12) converges. So, even if $f_{n+k}(x) \rightarrow+\infty$ when $\mathrm{k} \rightarrow+\infty$, formula (14) also converges. When function $J(x)$ of formula(13) is substituted into formula(2), formula(15) is obtained.

$$
\begin{equation*}
\mathrm{j}_{\mathrm{h}}(\mathrm{x})=\phi(\mathrm{x}) \cdot \mathrm{f}_{\mathrm{h}}(\mathrm{x}) \tag{15}
\end{equation*}
$$

When function $J(x)$ of formula(13) is substituted into formula(3), formula(16) is obtained.

$$
\begin{equation*}
\mathrm{j}_{\mathrm{d}}(\mathrm{x})=\phi(\mathrm{x}) \cdot \mathrm{f}_{\mathrm{d}}(\mathrm{x}) \tag{16}
\end{equation*}
$$

Among formula(14), formula(15), formula(16), only formula(15), formula(16) are the same form with formula(13). When $j_{h}(x)$ of for-m ula (15), $j_{d}(x)$ of formula (16), $j_{n}(x)$ of formula(14) are substituted into formula(5), product of differentiable function $\phi(t)$ and hyperfunction $\mathrm{f}(\mathrm{x})$ is obtained.
(5) Comparison between addition and product

Product is an operation at each point. When component $j_{n}(x)$ is obtained assuming approximate function be product $J(x)$ of approximate function $F(x)$ and $G(x)$, component $j_{n}(x)$ may, in some case, diverge. If component $\mathrm{j}_{\mathrm{n}}(\mathrm{x})$ diverges, hyperfunction $j(x)$ is not able to be defined. Addition is also an operation at each point. When component $\mathrm{j}_{\mathrm{n}}(\mathrm{x})$ is obtained assuming approximate function be addition $J(x)$ of approxi-m ate function $F(x)$ and $G(x)$, component $j_{n}(x)$ always converges. As for convergence of component, addition and product show different behavior.

