(1) Approximate function

When a function $F(x)$ containing independent variable x and singularizing parameter ε is infinitely differentiable, hyperfunction $f(x)$ can be defined using the function $F(x)$ as the approximate function.
(2) Definition of component

Using approximate function $F(x)$ and microdomain radius parameter ρ, component $\mathrm{f}_{\mathrm{h}}(\mathrm{x}), \mathrm{f}_{\mathrm{d}}(\mathrm{x}), \mathrm{f}_{\mathrm{i}}(\mathrm{x}), \cdots \cdot \cdot, \mathrm{f}_{\mathrm{n}}(\mathrm{x}), \cdots \cdots$ of hyperfunction $f(x)$ are calculated by formula (1) ~formula (4) .

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{h}}(\mathrm{x})=\lim _{\rho \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \mathrm{~F}(\mathrm{x}-\rho) \\
& \mathrm{f}_{\mathrm{d}}(\mathrm{x})=\lim _{\rho \rightarrow 0} \lim _{\varepsilon \rightarrow 0}\{\mathrm{~F}(\mathrm{x}+\rho)-\mathrm{F}(\mathrm{x}-\rho)\} \\
& \mathrm{f}_{1}(\mathrm{x})=\lim _{\rho \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \int_{\mathrm{x}-\rho}^{\mathrm{x}+\rho} \mathrm{F}(\mathrm{t}) \mathrm{dt}
\end{aligned}
$$

$$
\begin{equation*}
\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\lim _{\rho \rightarrow 0} \lim _{\varepsilon \rightarrow 0} \int_{\mathrm{x}-\rho}^{\mathrm{x}+\rho}(\mathrm{t}-\mathrm{x})^{\mathrm{n}-1} \mathrm{~F}(\mathrm{t}) \mathrm{dt} \tag{4}
\end{equation*}
$$

Note that subscript n of left hand side and power index $n-1$ of right hand side is not consistent. Formula (1) ~formula (4) calculat e components $f_{h}(x), f_{d}(x), f_{1}(x)$, • • $\mathrm{f}_{\mathrm{n}}(\mathrm{x})$, - • at $t=x$ from state of approximate function $F(x)$ within interval $x-\rho \leqq t \leqq x+\rho$. Interval $\mathrm{x}-\rho \leqq \mathrm{t} \leqq \mathrm{x}+\rho$ concerning approximate function $F(x)$ is called microdomain concerning hyperfunction $f(x)$, and parameter ρ is called microdomain radius parameter. During formula (1) ~ formula(4) are calculating singularizing parameter \mathcal{E} varies faster to limit than microdomain radius parameter ρ. Components are called like this, $f_{h}(x)$ is left continuous component, $\mathrm{f}_{\mathrm{d}}(\mathrm{x})$ is step component, $\mathrm{f}_{1}(\mathrm{x})$ is first degree component, -•, $\mathrm{f}_{\mathrm{n}}(\mathrm{x})$ is n -th degree component,
-• . Number of components is infinite.
(3) Expression of hyperfunction

Separating with comma "," lining up, putting in brackets components $f_{h}(x), f_{d}(x)$, $\mathrm{f}_{1}(\mathrm{x}), \cdot \bullet \cdot, \mathrm{f}_{\mathrm{n}}(\mathrm{x}), \cdot$ • , with the same expression as a vector, hyperfunction $f(x)$ is expressed by formula (5).

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=\left\{\mathrm{f}_{\mathrm{h}}(\mathrm{x}), \mathrm{f}_{\mathrm{d}}(\mathrm{x}), \mathrm{f}_{1}(\mathrm{x}), \cdots, \mathrm{f}_{\mathrm{n}}(\mathrm{x}), \cdots \cdot \boldsymbol{\bullet}\right. \tag{5}
\end{equation*}
$$

Expression by formula(5) is called function array. Letting symbols $1, \boldsymbol{\kappa}, \boldsymbol{f}_{\bullet}, \cdots \cdots$,
f $\Rightarrow{ }^{n}$, •••, be the basis vector, and with the same expression as a vector, hyperfunction $f(x)$ is expressed by formula (6).

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=\mathrm{f}_{\mathrm{h}}(\mathrm{x})+\mathrm{f}_{\mathrm{d}}(\mathrm{x}) \boldsymbol{\kappa}+\mathrm{f}_{1}(\mathrm{x}) \boldsymbol{f}_{\bullet>}+\cdots \cdot \mathrm{f}_{\mathrm{n}}(\mathrm{x}) \boldsymbol{f}_{\bullet}{ }^{\mathrm{n}}+\cdots \tag{6}
\end{equation*}
$$

Expression by formula (6) is called function pseudo value. Symbol $\sqrt{\boldsymbol{\kappa}}$ is called step unit, symbol $\uparrow \leftrightarrow$ is called lateral axis unit.
(4) Domain

Domain of hyperfunction is an interval, and is expressed using real number a, b, putting independent variable x between one of $\mathrm{a} \leqq, \mathrm{a}<,-\infty<$, as symbol of lower limit and one of $\leqq b,<b,<+\infty$, as symbol of lower limit. As the point $t=x$ of hyperfunction $f(x)$ corresponds with the microdomain $\mathrm{x}-\rho \leqq \mathrm{t} \leqq \mathrm{x}+\rho$ of approximate function $F(x)$, the domain of approximate function $F(x)$ is expressed containing microdomain radius parameter ρ. Symbol of lower limit $a \leqq$ of hyperfunction $f(x)$ corresponds symbol of lower limit a- $\rho \leqq$ of approximate function $F(x)$. Symbol of lower limit $a<$ of hyperfunction $f(x)$
corresponds symbol of lower limit $\mathrm{a}+\rho \leqq$ of approximate function $F(x)$. Symbol of lower
limit $-\infty<$ of hyperfunction $\mathrm{f}(\mathrm{x})$
corresponds symbol of lower limit $-\infty<$ of approximate function $F(x)$. Symbol of upper limit $\leqq b$ of hyperfunction $f(x)$ corresponds symbol of upper limit $\leqq \mathrm{b}+\rho$ of approximate function $F(x)$. Symbol of upper limit $<b$ of hyperfunction $f(x)$ corresponds symbol of upper limit $\leqq \mathrm{b}-\rho$ of approximate function $F(x)$. Symbol of upper limit $<+\infty$ of hyperfunction $f(x)$ corresponds symbol of upper limit $<+\infty$ of approximate function $F(x)$.
(5) Singular point and ordinary point A point, where any components $\mathrm{f}_{\mathrm{d}}(\mathrm{x})$, $\mathrm{f}_{1}(\mathrm{x}), \cdot \cdots \cdot \mathrm{f}_{\mathrm{n}}(\mathrm{x}), \cdot \cdots \cdot$, other than left continuous component $f_{h}(x)$, is not 0 , is called singular point of hyperfunction. A point which is not singular point is called ordinary point of hyperfunction. On the one hand, ordinary point exist continuously, the other, singular point exist discretely. A point, where step component $\mathrm{f}_{\mathrm{d}}(\mathrm{x})$ is not 0 , is called step point. A point, where n-th degree component $f_{n}(x)$ is not 0 , is called n-th degree concentration point.
(6) Equivalent approximate function When components calculated from 2 approximate functions $F(x), G(x)$ satisfy formula (7) ~formula(10), functions $F(x)$ and $G(x)$ are defined as equivalent.

$$
\begin{align*}
& \mathrm{f}_{\mathrm{h}}(\mathrm{x})=\mathrm{g}_{\mathrm{h}}(\mathrm{x}) \tag{7}\\
& \mathrm{f}_{\mathrm{d}}(\mathrm{x})=\mathrm{g}_{\mathrm{d}}(\mathrm{x}) \tag{8}\\
& \mathrm{f}_{\mathrm{i}}(\mathrm{x})=\mathrm{g}_{1}(\mathrm{x}) \tag{9}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\mathrm{g}_{\mathrm{n}}(\mathrm{x}) \tag{10}
\end{equation*}
$$

When approximate function $F(x)$ and $G(x)$ are equivalent, substituting formula(7) ~
formula(10) into formula(5) or formula(6), formula(11) is obtained.

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=\mathrm{g}(\mathrm{x}) \tag{11}
\end{equation*}
$$

Equivalent approximate function exist in
infinitely many.
(7) Not containing singularizing parameter When approximate function $F(x)$ does not contain singularizing parameter \mathcal{E}, substituting into formula (1) ~formula (4) and calculating, then substituting into formula(5), formula(12) expressed in function array is obtained.

$$
\begin{equation*}
\mathrm{f}(\mathrm{x})=(\mathrm{F}(\mathrm{x}), 0,0,0, \cdots, 0, \cdots) \tag{12}
\end{equation*}
$$

Substituting into formula(6), formula(13) expressed in function pseudo value is obtained.

As far as formula(12), formula (13) are concerned, all components other than left continuous component are 0 . Concerning formula(13), hyperfunction $f(x)$ seems to be apparently the same as approximate function $\mathrm{F}(\mathrm{x})$.

When approximate function $G(x)$ containing singularizing parameter \mathcal{E} converges approximate function $F(x)$ not containing singularizing parameter \mathcal{E}, as f ormula(14), substituting approximate function $G(x)$ into formula(1) ~formula (4) and calculating, then substituting into formula (5), hyperfunction $g(x)$ is expressed in function array by formula (15)

$$
\begin{align*}
& \lim _{\varepsilon \rightarrow 0} G(x)=F(x) \tag{14}\\
& g(x)=(F(x), 0,0,0, \cdots, 0, \cdots) \tag{15}
\end{align*}
$$

Because right hand side of formula(12) and formula(15) coincide, approximate function $G(x)$ and approximate function $F(x)$ are equivalent. For example, approximate function $G(x)$ expressed by formula(16) is equivalent to approximate function $F(x)$ expressed by formula (17)

$$
\begin{align*}
& \mathrm{G}(\mathrm{x})=\boldsymbol{\varepsilon} \mathrm{x}^{2}+(1+\varepsilon) \mathrm{x}+3+\boldsymbol{\varepsilon}^{2} \tag{16}\\
& \mathrm{~F}(\mathrm{x})=\mathrm{x}+3 \tag{17}
\end{align*}
$$

